

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2609

RESTful IoT Service Using the MERN Stack

NITIN KAUSHAL
Department of Information Technology, Maharaja Agrasen Institute of Technology, New Delhi – 110086

Submitted: 10-06-2021 Revised: 21-06-2021 Accepted: 24-06-2021

ABSTRACT – As we know that there is a

significant increase in the internet of things (IoT)

applications, an enormous number of IoT devices

are connected to the Internet and require

direct/indirect processing from the Cloud. A cloud

theoretically has unlimited resources, it is still a

significant challenge for the Cloud to perform a

real time response. This work is a designed and

developed RESTful IoT service for a quick

communication between IoT devices and the

Cloud, using the MERN stack. As a gateway, the

proposed system gathers data from IoT devices such

as wireless sensors, for the Cloud to further process

on it. The Representational State Transfer (REST)

model is adopted in the proposed system.

Keywords—Cloud, Design, Implementation, IoT,

MERN Stack, RESTful.

I. INTRODUCTION
Cloud computing was popularized in the

past decade to virtually provide unlimited

computation, storage, and service [1][2]. However,

the massive growth in the scale of data generated

for the Cloud to process in a real time manner has

been observed, and becomes a new challenge [3].

The other emerging field, the Internet of Things

(IoT), connects a large number of physical devices

to the Internet to realize intelligent systems [4][5].

IoT devices are characterized by small objects with

limited storage and processing capacity. The

integration of Cloud computing and IoT solves this

issue in IoT and presents an architecture that is

considered as a part of the Internet of the future.

However, with the connection of an

enormous number of small physical devices, which

generate data 24/7, the data processing ability of

Cloud computing is further challenged.

Additionally, real-time processing is desired. While

improved data processing technology at the Cloud

end is developed, advanced data gathering/pre-

preprocessing at the gateway of the Cloud and IoT

are also drawing attention. For example, Edge

computing [6][7] is a solution to pull the computing

closer to the location it is needed for the

improvements of response times and bandwidth

efficiency.

Fig. 0 System Illustration.

In this paper, we work towards an

effective and efficient data gathering system that

collects data from IoT devices, such as wireless

sensors, and feeds them to the Cloud for further

processing and data storage. The Representational

State Transfer (REST) model is adopted to develop

a RESTful IoT service, and the trending MERN

Stack is used to build the web- based IoT service, for

scalability and efficiency of development. Fig. 0 is

the illustration of the proposed data gathering

system.

The contribution of this work includes

 The study of the application of the MERN

stack for a RESTful web-based IoT service, for

efficient data gathering purposes.

 The design and implementation of a RESTful

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2610

IoT system using the MERN stack.

 Performance analysis of the proposed system

through experiments.

The rest of the paper is organized as

follows. Section II introduces the research

background. Section III presents the proposed

RESTful IoT Service using the MERN stack,

including the system design and implementation

details. IV is the experiments to evaluate the

proposed system. Section V concludes the paper.

II. PRELIMINARIES
A. IoT, Cloud, and RESTful Service

The integration of IoT and Cloud

computing provides an architecture that

interconnects the mobile sensing/monitoring

devices in IoT system with data processing virtual

server in the Cloud [2][8]. In a general cloud-IoT

architecture, there are 5 layers, including (1) end-

user interaction, (2) cloud structure,

(3) Internet access, (4) IoT backbone, and

(5) IoT devices. They work together to transmit data

collected from IoT devices , generating results and

reports for end users to make decision. As stated in

[2], new challenges arise when IoT devices connect

to the cloud. In this novel network architecture,

new protocols that facilitate big data streaming from

IoT devices to the cloud are needed.

In [9], Constrained Application Protocol

(CoAP) is developed as the communication

protocol for the data stream from wireless sensor

network to the Internet. However, in practice, the

direct connection of IoT devices, such as the power

impoverished wireless sensors, to the Internet is not

feasible, due to the complex network congestion

handling issues. A gateway system at the IoT

backbone layer is needed for data gathering

purpose. This gateway is expected to work with, or

instead of, CoAP to full data from sensors and

forward to the Cloud in an effective and efficient

way.

Representational State Transfer (REST) is

a model and architectural style for web-service

[10][11], where the native HTTP operations are

mapped on the four fundamental database

operations. When this model is used for gateway

API design, the Cloud will be able to communicate

with devices such as wireless sensors through it.

The gateway with a RESTful service is to transmit

data between Cloud and IoT devices. We will be

using this model for a RESTful IoT service design.

B. The MERN Stack

In web development terminology, a

“stack” refers to a full stack set of technologies to

create a working web application. It is common for

businesses to employ developers as either a „front-

end‟, „back-end‟, or „full-stack‟ developer. The

front-end developer works on the „front end‟ part of

a web application, such as the user interface, which

is also known as the client side of an application. A

back-end developer works on the „back end‟ part of

a web application, which the users cannot see, and

keeps the web application up and running, such as

the server and the database. A full stack developer

works on both the client side and server-side

components to make a fully function web

application.

The LAMP stack is a common web stack

solidified in the early 2000s which consists of a

Linux Operating system, an Apache web server, a

MySQL database, and a server-side scripting

language which is most commonly PHP. All of

these technologies were backend components while

JavaScript was typically a component of the front

end.

Today as Javascript becomes more

efficient and powerful, the old stacks are becoming

replaced with better ones. According to a 2019

stack overflow survey of 90,000 professional

developers, Javascript has become the most

popular programming language by 69.7 percent

[12]. In the survey Javascript has been the most

popular language for the last 9 years in a row.

The MERN stack is entirely based off of Javascript,

which makes it easier to use than other stacks. This

reduces overhead since in the LAMP stack there are

several languages, such as MySQL, PHP, not to

mention the front-end languages. However, in the

MERN stack everything is done in one language.

The MERN stack consists of different JavaScript

frameworks, MongoDB (M), Express (E), React

(R), and Node.js (N). The front end consists of

React, while MongoDB, Express and Node.js are

the backend components.

 MongoDB: This is the database of the MERN

stack where all the data is stored. It is a NoSQL

database. It has a flexible schema, which is

very scalable. MongoDB scales horizontally

while MySQL scales vertically, which makes

MongoDB more ideal for IoT devices like a

wireless sensor, since it is easier to add more

sensors to the network. Some well-known

companies that use MongoDB in 2019 are

Ebay, Cisco, Adobe, EA Sports, Google,

Facebook, Nokia, SAP, GAP, and Verizon

[13].

 Express: Express is a web framework for

Node.js, which is responsible for setting URL

routes. This is done using a RESTful

methodology based on native HTTP requests

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2611

such as GET, POST, DELETE, and UPDATE.

Express is responsible for the middleware in a

web application, which will be explained in

more detail in the system architecture. The

libraries in Express are to work with cookies,

sessions, user logins, URL parameters, POST

data, security headers, and many more [14].

Some well-known companies that use Express

in 2019 are Uber, Accenture, and IBM [15].

 React: React is the front-end component of the

MERN stack developed and maintained by

Facebook. In our proposed system

architecture, React can be adopted for front-

end development in the future. Another front-

end framework which is used with the other

components of this stack is Angular. An

advantage of React over Angular is that it has a

slightly less steep learning curve than Angular.

A feature of React is that it uses JSX to

structure the data. It is an extension of the

JavaScript language. React uses an in-memory

data structure cache to display the DOM.

Another feature is that it uses a virtual

Document Object Model, or virtual DOM. The

DOM is used for HTML and XML documents

as a tree data structure where each node is an

object representing part of the document.

 NodeJS: The server of a MERN stack is done

in NodeJS. It is an asynchronous server based

off of Google‟s V8 engine which was initially

built for Google Chrome. It uses a single

process, so we do not need to create a new

thread for every request, reducing bugs.

Whenever a new I/O operation is needed, such

as reading the network, accessing the database

or file system, instead of blocking the thread,

waiting for a new request and wasting CPU

cycles, Node.js will resume operations before

waiting for the response [16]. In performance

evaluations conducted Node.js can handle

about 2.5 times as many requests per second

compared to that of PHP [17]. In a hashing test,

the number of failed requests in an apache

server starts to increase around 20 concurrent

connections, rising to 7 failed requests by 30

connections, while a Node.js server has 0

failed requests [17]. Node.js is used by many

large corporations in 2019 such as Walmart

and Paypal.

III. THE PROPOSED RESTFUL IOT

SERVICE
In this section, we will introduce our proposed

system, a RESTful IoT service using MERN stack

for data gathering and communicating with the

Cloud.

A. Software Architecture

Fig 1. The software system.

The software architecture of the proposed

system is shown in Fig 1. The main project folder

named node-IOT-master includes the folders, lib,

node-modules, and test. The files of this system in

the main project folder are .env,

.eslintrc,.gitignore, .travis.yml, package-lock.json,

package.json, and server.js. Everything is uploaded

to a git repository to track updates on the project

except those listed in the .gitignore file. Travis is a

deployment tool. It runs its own tests on a docker

container to make sure the code is ready to be

deployed. The

.env file sets the environment and has authorization

tokens/api keys. The .eslintrc is a linter used to

make the code cleaner. The test file is used to test

the models and routes in the lib file. Server.js runs

the app on a certain port. Node modules are

modules automatically installed when using

Node.js. The package.json file are dependencies

which the project uses. It also contains project

properties, descriptions, author & license

information, and scripts. package-lock.json records

the exact version of each installed package.

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2612

Fig. 2 Architecture of lib.

The main folder of the project, lib folder,

in Fig 2 consists of middleware, models, routes, and

utils folders as well as an app.js file. The

middleware folder consists of the files error.js,

mongo-connection.js, and not-found.js.

Middleware is an important part of web

applications. It is the code that provides instructions

to decide what happens between a request initiated to

the server and a response given to the client. The

models folder consists of a Sensor.js file. This is

the sensor model which is uploaded to the

MongoDB database using a schema definition. The

routes folder consists of a sensors.js file. This

defines the URL routes that is used to contect to the

server from the internet browser. The utils folder

consists of a connect.js file. This file contains

Uniform Recource Identifiers (URIs) which access

an object using an internet protocol. The app.js file

imports the previous folders and files into one

JavaScript file.

B. Detailed Design

In this subsection, we will use sample code to

illustration the design of the system with the

MERN Stack.

Fig. 3 error.js

Shown in Fig. 3 is the error.js file, which

indicates the error status 500. The HyperText

Transfer (HTTP) 500 internal server error response

code indicates that the server encountered an

unexpected condition that prevented it from

fulfilling a request. It is a unique kind of

middleware that has 4 parameters compared to all

other types of middleware which only have 3. When

Express sees 4 parameters it knows the first

parameter is an error. When it sees 3 parameters it

knows the first parameter is a request, the second

parameter is a response, and the last parameter is a

higher order function which calls the next

middleware.

Fig. 4 mongo-connection.js

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2613

As shown in Fig. 4, the mongo-connection.js file uses Mongoose to connect to the MongoDBdatabase.

If the readyState status is connected or connecting then the middleware waits for the next request. Otherwise it

throws an error 500.

Fig. 5 notfound.js

In Fig. 5, an error status 404 is a standard

HTTP error response indicating that the server itself

was found but that the server was not able to

retrieve the requested page. Function next() at the

end of each middleware is called to go to the next

middleware function. In this case the next

middleware function is an error.

 Models

Unlike in SQL, the data modeling in MongoDB has

a flexible schema. In SQL you must define a

table‟s schema before inserting data. In MongoDB,

the collection of documents can have different

schemas [18].

Fig. 6 sensor.js

Fig. 7 sensor.js in routes Folder

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2614

In Fig. 6 we have the schema for a sensor

in MongoDB. This schema requires the sensor to

have an address as the data type of a string. If the

sensor does not have an address it will not be

uploaded to the MongoDB database. This is the

basic schema for a sensor. Later we can add more

information that a sensor outputs such as humidity,

temperature, etc.

 Routes

In Fig. 7, we have the sensor.js file for

establishing our routes. Here we have a GET and

POST command. The POST command creates data

for a new sensor onto the server to go to the

database. In Fig. 7, on line 13 we are creating our

POST command with the sensor model. The GET

command retrieves

 Utils

Fig. 8 connect.js in Utils folder

data from the database for a given sensor. Here we

get the data from the sensor at address 127.1.2.3.

The first part of Fig 8. on line 4 is the

redact function. The redact function parses the

username and passcode of the user. If there is no

username and password then the authPart is an

empty string and the URI is the same as it was

when it was passed through redact function. The

URI is based off of the.env file. In this file there

is only one line of code which is

MONGODB_URI=mongodb:****personalinfo***

*This URI is the address for the mongo database.

When there is a connection to the Mongo database

it will console log the connection. Whenever an

event happens such as „open‟, „error‟, „close‟,

„disconnected‟, or „reconnected, this even gets

logged to the console. Lines 26 through 30 connects

our app to the database with certain settings.

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2615

Fig. 9 app.js

Fig. 9 is our app.js file. This is the main

file where we import the previous files into one file.

We require Express and CORS. Require is Node.js

way of importing modules. On line 10 we are using

Morgan which is a logger that records how long it

takes for the server to respond to a request. In line

14 is a body parser. Line 16 and 17 are the routes.

Fig. 10 server.js

Fig. 10 contains the server.js file which runs app.js (our web application) on port 8080.

IV. CONCLUSIONS
In this paper, we study the scalable and

efficient data gathering issue in the IoT/Cloud

integrated environment. We propose a RESTful

IoT service using the MERN Stack, as a gateway to

gather data from IoT devices. REST model is known

to be able to build web API that is easily connected

with database. MERN Stack is used to achieve the

smooth flow of the development process. The

proposed system is expected to gather data in an

efficient and scalable way. The experiments further

verified the performance of the development

system.

REFERENCES
[1] J. Rittinghouse and J. Ransome, “Cloud

Computing: Implementaiton, Management,

and Security”, CRC Press, Inc. 2009.

[2] S. Sivakumar, V. Anuratha, and S.

Gunasekaran, “Survey on Integration of

Cloud Computing and Internet of Things

Using Application Perspective”,

International

[3] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar,

A. Gani, S. Khan, “The rise of “big data” on

cloud computing: Review and open research

issues,” Information Systems, Volume 47,

2015, Pages 98-115.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi,

M. Aledhari and M. Ayyash, “Internet of

Things: A Survey on Enabling

Technologies, Protocols, and

Applications,” in IEEE Communications

Surveys & Tutorials, Volume 17, Number 4,

pp. 2347-2376, 2015.

[5] S. Li, L. Xu, and S. Zhao, “The Internet of

International journal of advances in engineering and management (IJAEM)

Volume 3, issue 6 June 2021, pp: 2609-2616 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030626092616 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2616

Things: a Survey,” Information Systems

Frontiers, Volume 17, Issue 2, pp. 243-259.

April 2015.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu,

“Edge Computing: Vision and Challenges,”

IEEE Internet of Things Journal, Volume 3,

Number 5, pp. 637-646, Oct. 2016.

